励磁电机 永磁电机 无刷电机
无刷电机是什么?
下图是无刷电机的转子结构。

在这个转子内侧,有两个永久性磁铁,一个是N极,一个是S极。这种结构属于外转子型的无刷电机,即电机的转子在外面,而定子在内部。如下图所示:

电机的定子结构是线圈,也就是电磁铁。定子在内部是固定不动的,那么,大家来想一下,如何才能让这个电机转起来呢?
其实这个很容易想到,利用磁铁异性相吸的原理,如果我给定子线圈通电如下所示,会发生什么情况呢?

很显然,外面的转子由于异性相吸的原理会逆时针转动,让自己的N极靠近定子电磁铁的S极,自己的S极靠近定子的N极。很简单吧。看他们慢慢的靠近了。

如果两个磁极靠近了怎么办呢?还能继续转动吗?显然他们不想继续转动了。不过我们有办法。
我们让下一个线圈通电,刚才这个线圈不通电,即上图中标B的线圈通电流。这样永磁铁就开始继续赶路追寻下一个目标了。如下图所示。

这个过程就好比你拿了一个胡萝卜去勾引一头驴,你的胡萝卜和驴以同样的速度在运动,蠢驴永远也追不上胡萝卜,但是蠢驴终归是蠢驴,它会一直追下去。

就这样,无刷电机就转起来了,这当然是无刷电机最简单、最基本的运行原理而已。它是有明显的缺点的,它转动的时候会抖动,一会快一会儿慢,就像这头奔跑的蠢驴一样,它看见胡萝卜就跑,看不见的时候就不想跑,快追上胡萝卜的时候跑得快,离胡萝卜远的时候跑的慢,怎么办呢?干脆在给这个驴后面放个鞭子,拿鞭子打它让他赶紧的跑。于是乎就有了这样的电机,如下图所示。

在上图中,前面一个电磁铁线圈在勾引永磁铁,后面一个电磁铁线圈在推动永磁铁。就好像一头驴,前面有吃的东西,后面有鞭子,你说它跑还是不跑呢?
这样这头蠢驴就开始卖力的马不停蹄的奔跑了。。
有人说,哦,原来无刷电机这么简单啊?No,No,No,这里面的关键技术是你怎样让内部的定子线圈产生在合适的时间产生合适的电流?这简单吗?其实没有电力电子技术的支持一点也不简单啊。
有同学又问了,定子线圈怎么知道什么时候通什么电流,怎么知道驴什么时候追上来了,什么时候移动胡萝卜?
其实我们在无刷电机里面安装了霍尔传感器,霍尔传感器能够感受转子永磁铁的位置,也就是驴的位置,它能够及时的把驴的位置报告给定子线圈控制器,控制器根据这个信息来控制定子内部的线圈电流流向。就这样无刷电机就转起来了。
我们可以看到,无刷电机的定子线圈内部的电流其实也在不停的改变方向,所以其实是交流电,但是我们说的是无刷直流电机啊,是的,我们用的是直流电源啊,直流电源通过无刷电机的驱动器变成了交流电,这个过程其实是无刷电机的比较核心的技术。
普通直流电机线圈内部也是流通的交流电,但是普通电机是通过电刷和换向器的合作把直流电变成了交流电,电刷这个装置像一个刷子一样一直在摩擦,使得普通直流电机结构复杂,使用寿命不够长,而无刷电机用的是电力电子技术实现了电流的逆变(直流变交流),没有了电刷这个结构,所以叫做
无刷电机。是一种技术的进步。

如果你对普通直流电机和交流电机也感兴趣的话可以参考:
直流电机和交流电机的原理和区别是什么?
可以先看这个视频,
无刷直流电机是如何工作的,看这个视频就够了
然后,我再介绍一下无刷直流电机的相关东西:
首先,无刷直流电机是具有串励直流电机起动特性和并励直流电机调速特性的梯形波/方波电机,其基本结构由
电机本体、功率驱动电路及位置传感器三者组成。
无刷直流电机具有结构简单、出力大和效率高等特点
。
随着电机技术、电力电子技术、数字控制技术、控制理论及传感器技术的发展与应用,无刷直流电机的一般控制技术已日趋成熟,相关生产制造工艺和通用技术也均规范化,并形成了
GJB1983—1984、GB/T21418—2008
等一系列标准。同时,其电机优化设计、节能型驱动、转矩波动抑制、无位置传感器控制、弱磁调速等技术难题均得到了很好的研究和解决。
再来看看,无刷直流电机基本结构与工作特点:
无刷直流电机为了实现其无机械接触式换相,取消了电刷,(也就是题主第一个疑问)
并将电枢绕组和永磁磁钢分别放在定子和转子侧,成为“倒装式直流电机”结构。为了实现对电机转速和转向的控制,无刷直流电机必须具有由转子位置传感器和逆变器等共同构成的换相装置,如图 所示。

无刷直流电机的定子结构与普通同步电机或感应电机相似。对于常用的三相无刷直流电机,其电枢绕组可以 Y 联结或△联结,但考虑到系统的性能和成本,
目前应用较多的是电枢绕组 Y 联结、三相对称且无中性点引出的电机。
无刷直流电机的绕组形式主要有整距集中绕组、整距分布式绕组、短距分布式绕组等。绕组形式的不同将影响电机的反电动势波形,进而影响到电机的性能。一般来讲,整距集中绕组能得到较好的梯形反电动势波形,短距绕组则有利于削弱转矩波动。
转子结构有三种典型形式:表面粘贴式磁极、嵌入式磁极和环形磁极。永磁体材料主要有铝镍钴、铁氧体、钐钴和钕铁硼等,一些新的复合磁性材料也正逐渐被应用到无刷直流电机中来。
无刷直流电机常用的位置传感器有电磁式、光电式和磁敏式等。Hall 传感器为磁敏式位置传感器的一种,其体积小、使用方便且价格低廉,在无刷直流电机控制系统中应用广泛。特殊的集成电路则可将 Hall 传感器等位置信号直接变成数字信号,便于无刷直流电机控制的数字化与智能化实现。
无刷电机在生活中的应用还是很多的,只是你没看到,或者你看见了,但没认出来而已。
1.汽车用无刷直流电机
一辆汽车内部通常包括几十到上百台电机,随着汽车向节能和环保方向的快速发展,无刷直流电机在汽车中具有很好的应用前景。电机除了可作为汽车驱动的核心部件外,还可用在汽车空调、雨刮器、电动车门、安全气囊、电动座椅
等驱动上。同时,在纯电动汽车、混合动力汽车等驱动中,无刷直流电机也得到了广泛应用。
2.航空航天用无刷直流电机
典型应用有机械臂控制、陀螺仪与舵机驱动等,一般要求其具有良好的高速控制精度和动态响应能力,所以相应系统均通过闭环速度反馈进行控制,且大多采用先进控制算法。
3.在家用电器中的应用
变频空调的兴起使得无刷直流电机在空调驱动中的市场份额正逐步提高。为了节约成本和提高变频空调压缩机控制系统的稳定性,空调压缩机中宜采用无位置传感器控制方式
,实际证明采用无位置传感器控制后,不但系统体积得到减小,而且系统效率也得到了提高。盘式无刷直流电机(单定子或双定子结构)在VCD、DVD 等家用电器的主轴驱动中也应用广泛。
同时,吸尘器、搅拌机、电吹风机、摄像机和家用电风扇等其他家用电
器也正在逐步采用无刷直流电机代替先前使用较多的直流电机、单相异步电机和变压变频(VVVF)驱动式异步电机。
4.在办公自动化领域的应用
计算机外围设备和办公自动化设备用电机,绝大部分为先进制造技术和新兴微电子技术相结合的
高档精密电机,是技术密集化产品。在硬盘驱动器、光盘驱动器和软盘驱动器用的主轴电机,以及数码
相机、激光打印机、复印机、传真机、录音机、LD影碟机和碎纸机等办公设备的驱动中,无刷直流电机已有很好的应用。
5.在其他工业上的应用
目前,在民用和军用的机器人和机械臂驱动等应用中,无刷直流电机所占比例较大。
混合励磁电机
在保持电机较高效率的前提下,改变电机的拓扑结构,由两种励磁源共同产生电机主磁场,实现电机的主磁场调节和控制,改善电机调速、驱动性能或调压特性的一类新型电机。
“混合励磁” 思想早在 1988 年便由俄罗斯学者提出,但缺乏相对统一的定义。
混合励磁定义如下:有时也称组合励磁或复合励磁,是由两种励磁源相互作用,共同实现电磁能量转换,是对单一励磁(永磁励磁或电励磁)概念的有效拓宽与延伸。
由于混合励磁电机在结构上实现了电机气隙磁场的直接调节与控制,突破了传统永 磁电机通过电枢电流矢量控制实现弱磁或增磁的局限,结构上可有多种实现方式。
按照转子(动子)的运动方向可分为旋转式混合励磁电机和直线式混合励磁电机; 从电机永磁体放置位置可分为转子永磁型混合励磁电机和定子永磁型混合励磁电机。
另外,从电机内永磁体磁势与电励磁磁势相互作用关系来看,一般可归结为三种 类型,即:串联磁路、独立并联磁路和串并联混合磁路。
对于串联磁路,永磁体的磁势与电励磁产生的磁势相串联,共同形成气隙磁场;对于独立并联磁路,通常存 在径向磁路和轴向磁路,永磁磁场磁路与电励磁磁场回路相互独立,但在气隙中相互作用,共同形成电机主磁场;对于串并联混合磁路,永磁体磁路与电励磁磁路既 有串联部分,又有并联部分,共同形成电机主磁场。
通过控制电励磁绕组电流的大小和方向,实现电机气隙磁场的灵活调节与控制。
优势与应用
与永磁电机比较,混合励磁电机具有调节气隙磁场的能力;与电励磁同步电机相 比,具有较小的电枢反应电抗。
混合励磁电机不仅能继承永磁电机的诸多特点,而且具有电励磁电机气隙磁场平滑可调的优点,用作发电机,可获得较宽的调压范 围,在飞机、舰船和车辆中可作为独立的发电系统。
用作电动机,适合于作节能驱动使用,而其中的宽调速特性可以在电动汽车、武器设备伺服驱动等高要求场合应用。
什么是永磁电机
一、什么是永磁电机?
永磁电机采用永磁体生成电机的磁场,无需励磁线圈也无需励磁电流,效率高结构简单,是很好的节能电机,随着高性能永磁材料的问世和控制技术的迅速发展.永磁电机的应用将会变得更为广泛。





二、永磁电机的发展历史
永磁电机的发展同永磁材料的发展密切相关。
我国是世界上最早发现永磁材料的磁特性并把它应用于实践的国家,两千多年前,我国利用永磁材料的磁特性制成了指南针,在航海、军事等领域发挥了巨大的作用,成为我国古代四大发明之一。
19世纪20年代出现的世界上第一台电机就是由永磁体产生励磁磁场的永磁电机。
但当时所用的永磁材料是天然磁铁矿石(Fe3O4),磁能密度很低,用它制成的电机体积庞大,不久被电励磁电机所取代。
随着各种电机迅速发展的需要和电流充磁器的发明,人们对永磁材料的机理、构成和制造技术进行了深入研究,相继发现了碳钢、钨钢(最大磁能积约2.7 kJ/m3)、钴钢(最大磁能积约7.2 kJ/m3)等多种永磁材料。
特别是20世纪30年代出现的铝镍钴永磁(最大磁能积可达85 kJ/m3)和50年代出现的铁氧体永磁(最大磁能积现可达40 kJ/m3),磁性能有了很大提高,各种微型和小型电机又纷纷使用永磁体励磁。
永磁电机的功率小至数毫瓦,大至几十千瓦,在军事、工农业生产和日常生活中得到广泛应用,产量急剧增加。
相应地,这段时期在永磁电机的设计理论、计算方法、充磁和制造技术等方面也都取得了突破性进展,形成了以永磁体工作图图解法为代表的一套分析研究方法。
但是,铝镍钴永磁的矫顽力偏低(36~160 kA/m),铁氧体永磁的剩磁密度不高(0.2~0.44 T),限制了它们在电机中的应用范围。
一直到20世纪60年代和80年代,稀土钴永磁和钕铁硼永磁(二者统称稀土永磁)相继问世,它们的高剩磁密度、高矫顽力、高磁能积和线性退磁曲线的优异磁性能特别适合于制造电机,从而使永磁电机的发展进入一个新的历史时期。
三、永磁电机的特点及应用
与传统的电励磁电机相比,永磁电机,特别是稀土永磁电机具有结构简单,运行可靠;体积小,质量轻;损耗小,效率高;电机的形状和尺寸可以灵活多样等显着优点。
因而应用范围极为广泛,几乎遍及航空航天、国防、工农业生产和日常生活的各个领域。
下面介绍几种典型永磁电机的主要特点及其主要应用场合。
1、 稀土永磁发电机永磁同步发电机与传统的发电机相比不需要集电环和电刷装置,结构简单,减少了故障率。
采用稀土永磁后还可以增大气隙磁密,并把电机转速提高到最佳值,提高功率质量比。
当代航空、航天用发电机几乎全部采用稀土永磁发电机。
其典型产品为美国通用电气公司制造的150 kVA 14 极 12 000 r/min~21 000 r/min和100 kVA 60 000 r/min的稀土钴永磁同步发电机。
国内研发的第一台稀土永磁电机即为3 kW 20 000 r/min的永磁发电机。
永磁发电机也用作大型汽轮发电机的副励磁机,80年代我国研制成功当时世界容量最大的40 kVA~160 kVA稀土永磁副励磁机,配备200 MW~600 MW汽轮发电机后大大提高电站运行的可靠性。
目前,独立电源用的内燃机驱动小型发电机、车用永磁发电机、风轮直接驱动的小型永磁风力发电机正在逐步推广。
2 、高效永磁同步电动机永磁同步电动机与感应电动机相比,不需要无功励磁电流,可以显着提高功率因数(可达到1,甚至容性),减少了定子电流和定子电阻损耗,而且在稳定运行时没有转子铜耗,进而可以减小风扇(小容量电机甚至可以去掉风扇)和相应的风摩损耗,效率比同规格感应电动机可提高2~8个百分点。
而且,永磁同步电动机在25%~120%额定负载范围内均可保持较高的效率和功率因数,使轻载运行时节能效果更为显着。
这类电机一般都在转子上设置起动绕组,具有在某一频率和电压下直接起动的能力。
目前主要应用在油田、纺织化纤工业、陶瓷玻璃工业和年运行时间长的风机水泵等领域。
我国自主开发的高效高起动转矩钕铁硼永磁同步电动机在油田应用中可以解决“大马拉小车”问题,起动转矩比感应电动机大50%~100%,可以替代大一个机座号的感应电动机,节电率在20%左右。
纺织化纤行业中负载转动惯量大,要求高牵入转矩。
合理设计永磁同步电动机的空载漏磁系数、凸极比、转子电阻、永磁体尺寸和定子绕组匝数可以提高永磁电机的牵入性能,促使它应用于新型的纺织和化纤工业。
大型电站、矿山、石油、化工等行业所用几百千瓦和兆瓦级风机、泵类用电机是耗能大户,而目前所用电机的效率和功率因数较低,改用钕铁硼永磁后不仅提高了效率和功率因数,节约能源,且为无刷结构,提高了运行的可靠性。
目前1 120kW永磁同步电动机是世界上功率最大的异步起动高效稀土永磁电机,效率高于96.5%(同规格电机效率为95%),功率因数0.94,可以替代比它大1~2个功率等级的普通电动机。
3 、交流伺服永磁电动机和无刷直流永磁电动机现在越来越多地用变频电源和交流电动机组成交流调速系统来替代直流电动机调速系统。
在交流电动机中,永磁同步电机的转速在稳定运行时与电源频率保持恒定的关系,使得它可直接用于开环的变频调速系统。
这类电机通常由变频器频率的逐步升高来起动,在转子上可以不设置起动绕组,而且省去了电刷和换向器,维护方便。
变频器供电的永磁同步电动机加上转子位置闭环控制系统构成自同步永磁电动机,既具有电励磁直流电动机的优异调速性能,又实现了无刷化,主要应用于高控制精度和高可靠性的场合,如航空、航天、数控机床、加工中心、机器人、电动汽车、计算机外围设备等。
现已研制成宽调速范围、高恒功率调速比的钕铁硼永磁同步电动机和驱动系统,调速比高达1:22 500,极限转速达到9 000 r/min。
永磁同步电动机高效、小振动、低噪声、高转矩密度的特点在电动车、机床等驱动装置中是最理想的电动机。
随着人民生活水平的不断提高,对家用电器的要求越来越高。
例如家用空调器,既是耗电大件,又是噪声的主要来源,其发展趋势是使用能无级调速的永磁无刷直流电动机。
它既能根据室温的变化,自动调整到适宜的转速下长时间运转,减少噪声和振动,使人的感觉更为舒适,还比不调速的空调器节电1/3。
其他如电冰箱、洗衣机、除尘器、风扇等也在逐步改用无刷直流电动机。
4 、永磁直流电动机直流电动机采用永磁励磁后,既保留了电励磁直流电动机良好的调速特性和机械特性,还因省去了励磁绕组和励磁损耗而具有结构工艺简单、体积小、用铜量少、效率高等特点。
因而从家用电器、便携式电子设备、电动工具到要求有良好动态性能的精密速度和位置传动系统都大量应用永磁直流电动机。
500 W以下的微型直流电动机中,永磁电机占92%,而10 W以下的永磁电机占99%以上。
目前,我国汽车行业发展迅速,汽车工业是永磁电机的最大用户,电机是汽车的关键部件,一辆超豪华轿车中,各种不同用途的电机达70余台,其中绝大部分是低压永磁直流微电机。
汽车、摩托车用起动机电动机,采用钕铁硼永磁并采用减速行星齿轮后,可使起动机电动机的质量减轻一半。
四、永磁电机的分类
永磁电机种类繁多。
根据电机功能大致可分为永磁发 电机和永磁电动机两大类 。
永磁 电动机又可分为永磁直流电动机和永磁交流电动机。
而永磁交流电动机指的是带有永磁转子的多相同步电动机,所以常被称为永磁 同步电动机 (PMSM)。

永磁直流电动机如果按有无 电剧和 换向器来分.又可分为永磁有刷直流电动机和永磁无刷 直流 电动机 (BLDCM )。
当今世界,现代电力电子学理论和技术正在大发展.电力电子器件,如 MOSFET、IGBT、MCT 等的不断问世,控制装置发生根本性变化。
自 1971年 F·BlascEke提出交流电机矢量控制原理之后,矢量控制技术的发展开创 了交流伺服传动控制 的新纪元,丽各种高性能微处理器的不断推 出,进一步加速了交流伺服系统取代直流伺服系统的发展。
交辩I伺服系统取代直流伺服系统已成必然趋势。
然而,具有正弦波反电势的永磁同步电动机 (PMSM)和具有梯形波反电势的无刷直流电动机 (BLIX~)因其本身卓越 的性能必将会成为发展高性能交流伺服系统的主流 。
五、永磁电机的相关注意事项
1 、磁路结构和设计计算
为了充分发挥各种永磁材料的磁性能,特别是稀土永磁的优异磁性能,制造出性价比高的永磁电机,就不能简单套用传统的永磁电机或电励磁电机的结构和设计计算方法,必须建立新的设计概念,重新分析和改进磁路结构。
随着计算机硬件和软件技术的迅猛发展,以及电磁场数值计算、优化设计和仿真技术等现代化设计方法的不断完善,经过电机学术界和工程界的共同努力,现已在永磁电机的设计理论、计算方法、结构工艺和控制技术等方面取得了突破性进展,形成了以电磁场数值计算和等效磁路解析求解相结合的一整套分析研究方法和计算机辅助分析、设计软件,并正在不断完善中。
2、 控制问题
永磁电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。
永磁发电机难以从外部调节其输出电压和功率因数,永磁直流电动机不能再用改变励磁的办法来调节其转速。
这些使永磁电机的应用范围受到了限制。
但是,随着MOSFET、IGBT等电力电子器件和控制技术的迅猛发展,大多数永磁电机在应用中,可以不必进行磁场控制而只进行电枢控制。
设计时需要把稀土永磁材料、电力电子器件和微机控制三项新技术结合起来,使永磁电机在崭新的工况下运行。
3、 不可逆退磁问题
如果设计或使用不当,永磁电机在过高(钕铁硼永磁)或过低(铁氧体永磁)温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械震动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。
因而,既要研究开发适于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时,采用相应措施保证永磁电机不失磁。
4 、成本问题
铁氧体永磁电机,特别是微型永磁直流电动机,由于结构工艺简单、质量减轻,总成本一般比电励磁电机低,因而得到了极为广泛的应用。
由于稀土永磁目前价格还比较贵,稀土永磁电机的成本一般比电励磁电机高,这需要用它的高性能和运行费用的节省来补偿。
在某些场合,例如计算机磁盘驱动器的音圈电动机,采用钕铁硼永磁后性能提高,体积质量显着减小,总成本反而降低。
在设计时既需根据具体使用场合和要求,进行性能、价格的比较后决定取舍,又要进行结构工艺的创新和设计优化以降低成本。